MANAGING THE DIGITALLY INTEGRATED POWER PLANT

January 23-24, 2018
Hilton Garden Inn New Orleans French Quarter/
Central Business District
New Orleans, LA

EUCI is authorized by IACET
to offer 1.0 CEUs for the
conference and 0.4 CEUs
for the workshop

2018 SPEAKERS

Arthur Mayclin, Manager, I&C Engineering,
Calpine Corporation
Marc Latchney, Control Field Service
Manager, Calpine Corporation
Bill Ansley, Innovation Specialist, Exelon
Corporation
Mark Prince, IT Manager – Operational
Technology Fossil, Entergy
Michael Sedliak, Principal Engineer-Fleet Tech
Support, NRG Energy
Clinton Carter, Director – Operations
Services, Luminant
Meagan Healy, Senior Performance Engineer,
Associated Electric Cooperative
Sandy Rainey, Hydro Technical Supervisor,
Northern California Power Agency
Roberto del Real, Associate Director for
Energy Management and Optimization,
University of Texas
Pierre Andrieux, O&M Performance Team
Manager, EDF Energy
Juan Ontiveros, Executive Director – Utility
Operations, University of Texas
Brad Geddes, Senior Associate, Southern
Engineering Services
Jason Remer, Director, Plant Life Extension,
Nuclear Energy Institute
Raja Kuppuswamy, Senior Principal
Engineer, Dynamic Ratings

POST-CONFERENCE WORKSHOP

Knowledge Engineering - The Virtual Subject Matter Expert:
Automating the Diagnostics and Prognostics Process

WEDNESDAY, JANUARY 24, 2018

TAG US #EUCIEvents
FOLLOW US @EUCIEvents

SPONSOR
OVERVIEW

Managing the Digitally Integrated Power Plant examines how digital technologies are redefining workflows and business processes by allowing plant and fleet operators to exchange high quality data, information and analytics throughout power generation assets. Enhanced data quality and applied analytics enable more efficient maintenance, while instant communication results in safer and more reliable operations. This evolution is a constant process, requiring a significantly increased collaboration between operational technology, information technology, and analytics.

The digital technology used to operate industrial control systems and regulate the mechanical equipment within power generation assets unlocks enterprise value by increasing plant efficiency while creating unique challenges. In order to maximize the capabilities of new digital monitoring systems, information and operational technology professionals must coordinate equipment and applications that use divergent digital platforms and communication protocols. The speed with which digital technologies evolve also creates a challenge when integrating systems into a power plant which upgrades at a much slower rate.

Managing the Digitally Integrated Power Plant will address how plant operators can maximize the efficiency of their plant operations while integrating disparate digital applications that work both with each other and adhere to cyber security standards.

LEARNING OUTCOMES

- Leverage the drivers behind current technological disruptions to remain economically competitive
- Handle hardware and software upgrades while accounting for compatibility and obsolescence
- Utilize data to recognize hardware maintenance needs
- Protect equipment in older plants by understanding advanced digital protective devices
- Adopt strategies to communicate the business case for plant monitoring
- Reduce maintenance costs through performance monitoring
- Improve plant efficiency through digital upgrades
- Apply case studies of successfully implemented automated processes
- Evaluate software used for preventative analytics
- Examining new trends in cyber security
- Applying digital technologies to reduce O&M costs

WHO SHOULD ATTEND

Managers and engineers responsible for:

- IT
- Plant Operations
- I&C
- Performance and Reliability
- Plant
- Asset
- Risk
- Fleet Operations
- Engineering Services
- Control Field Services
- Technology Support
- O&M
- Controls
- Maintenance
- Monitoring
AGENDA

TUESDAY, JANUARY 23, 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 8:30 am</td>
<td>Registration and Continental Breakfast</td>
</tr>
<tr>
<td>8:30 – 9:15 am</td>
<td>Sustaining Economic Competitiveness During a Time of Technological Disruption</td>
</tr>
<tr>
<td></td>
<td>The 4th industrial revolution is transforming all aspects of society. This presentation discusses the drivers behind this technological revolution, how it is demonetizing many industries and a possible approach to remaining competitive through the radical transformation of core business processes. Clinton Carter, Director – Operations Services, Luminant</td>
</tr>
<tr>
<td>9:15 – 10:00 am</td>
<td>Intelligent Generation: Using a Digital Platform to Increase Operational Efficiency and Effectiveness</td>
</tr>
</tbody>
</table>
| | Power plant owners and operators are facing increasing challenges due to trends such as decarbonization, conservation and the Industrial Internet of Things. Some of the challenges created by these trends are reduced revenue and resources, cycling for base load assets, integrating renewables, digitization and cyber security. In response to these challenges, EPRI has launched the I4Gen (Insight through the Integration of Information to enable Intelligent Generation) strategic initiative. This initiative enables the operating workforce using a digital platform which produces real-time information to estimate equipment condition, enhance maintenance, optimize operations, and augment decision making abilities. The benefits of the initiative are:
 - Increased workforce efficiency and effectiveness
 - Cost reductions and/or reduced down-time for equipment maintenance
 - Enables new strategies for managing and transitioning workforce
 - Greater insights and options for system, plant and fleet performance
 - Improved ability to manage and control dynamic plant operations
Juan Villarreal, Senior Program Manager, Operations and Maintenance – Generation Sector, EPRI |
| 10:00 – 10:45 am| **Handling Obsolescence with Hardware and Software – Maintaining a Reasonable Upgrade Schedule** |
| | The control systems lifecycle offers challenges for long term maintenance of legacy control equipment. These include changes brought about by commercial off the shelf (COTS) integration and cyber security requirements. Virtualization and remote access applications offer benefits with regards to upgrades.
 - Support and spare parts options for legacy control equipment
 - COTS equipment lifecycle and support impacts
 - Non-OEM replacement options for legacy equipment (virtualization)
*Arthur Mayclin, Manager, I&C Engineering, Calpine Corporation
Marc Latchney, Control Field Service Manager, Calpine Corporation* |
| 10:45 – 11:15 am| Networking Break |
TUESDAY, JANUARY 23, 2018 (CONTINUED)

11:15 – 12:00 pm **Using Partial Discharge Patterns for Identifying Generator Winding Maintenance Needs**
Forced outage of generators due to stator winding insulation failure can result in significant financial loss because of the high cost of repair and loss of production. In the past decade, advanced hardware and software have enabled superior methods of converting the Partial Discharge (PD) testing data into practical information about the relative condition of the insulation, as well as determining the root causes of any insulation deterioration. In this presentation, the results of the PD measurement and PD pulse pattern analysis performed on a healthy generator and a generator that experienced dielectric breakdown failure during operation is presented.
• On-line partial discharge testing
• NCPA case study
• Converting PD data into practical information

Sandy Rainey, Hydro Technical Supervisor, Northern California Power Agency
Raja Kuppuswamy, Senior Principal Engineer, Dynamic Ratings

12:00 – 12:45 pm **Digital Protection of Equipment in Older and Modern Power Plants**
Digital technology has advanced and expanded the role of the “protective relay” in the power plant. Traditional protective devices, in older plants, were limited to electromechanical or solid state devices with their sole purpose of providing protection to plant equipment and maintaining a safe working environment. Microprocessor protective devices not only offer superior protection to plant equipment, but also offer a much safer work environment as well as real time operational data and analytical tools for accurate event analysis.
• Reviewing advances in equipment protection, arc flash protection, real time data mining, and event analysis
• Looking out for challenges involved with incorporating digital protection into older plants
• Protecting equipment in the digital age
• Integrating digital relays to improve performance and cut down on maintenance costs

Michael Sedlak, Principal Engineer-Fleet Tech Support, NRG Energy

12:45 – 1:45 pm **Group Luncheon**

1:45 – 2:30 pm **Panel Discussion: Communicating the Business Case for Increased Plant Monitoring**
Plant operations and technical professionals will discuss challenges and strategies involved with communicating the value of increased plant monitoring.
• Reducing errors by standardizing workflows
• Efficiently use data and analytics by breaking down internal plant or fleet silos

Panelists:
Michael Sedlak, Principal Engineer-Fleet Tech Support, NRG Energy
Clinton Carter, Director – Operations Services, Luminant
Juan Ontiveros, Associate Vice President for Utilities, Energy & Facilities Management, University of Texas
AGENDA

TUESDAY, JANUARY 23, 2018 (CONTINUED)

2:30 – 3:15 pm Transitioning from Time-Based Maintenance to Condition-Based Maintenance and Performance Monitoring (PM) at Exelon
The purpose of the PM program is to do the right maintenance at the right time. The bathtub curve is generated by mapping the rate of early “infant mortality” failures when first installed, the rate of random failures with constant failure rate during “useful life”, and finally the rate of “wear out” or “end-of-life” failures as the component nears or exceeds its expected design life. For equipment where an unexpected failure is undesirable, the goal is to change out the component before the “late life” failures cause the curve to start increasing but not significantly before the increase in the “late life” curve. This session will cover topics including Predix APM, DAS – leaky wire, and wireless sensors.
• Reducing maintenance budgets and/or backlogs
• More reliably predicting equipment future performance
• Increasing worker satisfaction through the perception of higher value work
• Improving forced loss rate
• Managing risks, and driving continuous improvement

Bill Ansley, Innovation Specialist, Exelon Corporation

3:15 – 3:45 pm Networking Break

3:45 – 4:30 pm Efficiency Improvements Due to Digital Upgrades
The University of Texas microgrid includes a 134 MW CHP plant, 1.2 million lb/hr boiler plant, 45,000 ton cooling plant and 85,000 ton-hrs of chilled water thermal storage capacity that serves 20,000,000 square foot research campus to optimize reliability, power quality, safety, operational effectiveness, energy efficiency and enables customer participation. The microgrid is designed to handle contingencies for thermal and power upsets, network security, separation of HMI’s, software application tools, engineering access and the web.
This presentation will describe how the university utilizes digital technology in order to achieve:
• Operational effectiveness
• Optimization efforts
• Software application tools

Roberto del Real, Associate Director for Energy Management and Optimization, University of Texas

4:30 pm End of Day One
WEDNESDAY JANUARY 24, 2018

8:00 – 8:30 am Continental Breakfast

8:30 – 9:10 am Implementing Cyber Security so it Enables Rather than Hinders New Technologies
Market pressures are changing the mission profile for generation plants to include flexible generation with reduced resources. Part of the solution is increased use of digital technologies for automation, monitoring, and analytics. In addition, control system vendors are moving rapidly to advanced digital technologies including IIOT, automation, wireless, and use of commodity hardware and software. Unfortunately, concerns about cyber security, including compliance, are hindering digital upgrades and adoption of new technologies. Although important, cyber security is just another set of requirements in the engineering design, operations, and maintenance processes. In this session, we will cover methods and approaches to implementing cyber security so that it enables rather than hinders adoption and implementation of new technology through:
• Applying the EPRI Technical Assessment Methodology (TAM) to reduce the cost of implementing cyber security, and reduce sensitivities to a changing threat landscape
• Utilizing existing control system capabilities for cyber security and monitoring
• Advanced hardware based security for interactive remote access

Brad Geddes, Senior Associate, Southern Engineering Services

9:10 – 9:50 am Monitoring and Managing Cyber Security for the Digitally Integrated Systems in Gapped Plants
Although the gapping of plant systems in nuclear plants has been federal law for almost a decade, the use of data diodes to gap fossil plant systems has become more common due to the increased security provided. This security strategy brings new cultural and technical challenges which can be overcome through proper implementation and change management.

Mark Prince, IT Manager – Operational Technology Fossil, Entergy

9:50 – 10:30 am Avoiding Plant Events Through Remote Monitoring
This presentation will describe how remote monitoring can be used to enhance performance and availability.
• Detection and diagnosis of performance losses
• Early fault detection
• Experience feedback on remote monitoring

Pierre Andrieux, O&M Performance Team Manager, EDF Energy

10:30 – 11:00 am Networking and Refreshment Break
WEDNESDAY JANUARY 24, 2018 (CONTINUED)

11:00 am – 11:40 pm Overcoming Barriers Involved with Applying Digital Technologies to Reduce OEM Costs
Most nuclear power facilities have applied digital technologies to secondary plant systems such as the turbine, feedwater system and turbine valve controls. However, most plants are still using analog or first generation digital systems for safety related vital applications. Issues such as Common Cause Failure, need for hardware diversity, testing requirements and onerous regulatory requirements have discouraged adoption of modern digital systems for most domestic plants. With the application of modern digital control and safety systems, many surveillance and calibration checks can be eliminated thereby reducing the maintenance requirements and attendant manpower. This session will explore these additional topics:
• Regulatory requirements for safety-related digital applications
• 10 CFR 50.59 for digital modifications
• Increased availability and efficiency with digital controls
• Improved safety margins

Jason Remer, Director, Plant Life Extension, Nuclear Energy Institute

11:40 am – 12:20 pm Preventing Equipment Failure Using Predictive Analytic Software
The presentation will show how UT Austin maintains an uninterrupted and cost-effective power supply using a predictive analytic software solution to help achieve an un-interrupted and cost-effective power supply for the campus.
• The technology approach has provided cost savings
• It has improved both stability and performance when compared to routine or time based preventive maintenance
• It has identified hidden problems before they turned into catastrophic failures for the gas turbines, steam turbines and boiler systems
• It is simple to use for the operator and provides quick access to the data tags for trouble shooting.

Juan Ontiveros, Associate Vice President for Utilities, Energy & Facilities Management, University of Texas

12:20 pm Conference Concludes
POST-CONFERENCE WORKSHOP

Knowledge Engineering - The Virtual Subject Matter Expert: Automating the Diagnostics and Prognostics Process

JANUARY 24, 2018

1:00 – 1:30 pm Registration
1:30 – 5:00 pm Workshop Timing

OVERVIEW

Artificial Intelligence and Machine Learning provide great potential for improving power asset performance and reliability. These data analytics tools have been used to monitor critical assets from several years. However, the diagnosis or cause of the problem has typically been performed manually by subject matter experts (SMEs). This manual process presents a bottleneck for many operators as the internal subject matter expert (SME) resources are being reduced due to cost-cutting measures or are retiring. Knowledge Engineering (KE) principles can be used capture the expertise and experience of these SMEs to create a Virtual SME that can automate the diagnosis and prognosis process. This workshop discusses the Knowledge Engineering principles and process used to automate the diagnostic and prognostic processes so that it can be leveraged across the entire fleet. In addition, methods for predicting the remaining useful life or time to act will be discussed. These prognostic methods can also be automated using KE principles to allow operators to make risk-based decisions and manage equipment outages, repairs or replacements. Several case studies and examples will be used in the workshop to illustrate how KE can be used to create the Virtual SME. By adding automated diagnostics and prognostics to an existing monitoring program, operators can enhance the effectiveness and efficiency of their condition-based reliability programs.

LEARNING OUTCOMES

• Define Knowledge Engineering and how it can be used to automatically diagnose and provide a prognosis to an equipment problem
• Describe the Knowledge Engineering process of capturing expertise and knowledge for an automated system
• Review, discuss and contrast various automated diagnostic techniques
• Apply automated diagnostics in a case study
• Review, discuss and contrast various automated prognostics techniques
• Apply automated prognostics in a case study

REGISTER TODAY! CALL 303-770-8800 OR VISIT WWW.EUCI.COM
WORKSHOP AGENDA

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 – 1:00 pm</td>
<td>Workshop Registration</td>
</tr>
<tr>
<td>1:00 – 3:00 pm</td>
<td>Understanding Knowledge Engineering</td>
</tr>
<tr>
<td></td>
<td>• What is Knowledge Engineering?</td>
</tr>
<tr>
<td></td>
<td>o Principle of Knowledge Engineering</td>
</tr>
<tr>
<td></td>
<td>• The Knowledge Engineering Process</td>
</tr>
<tr>
<td></td>
<td>o Sources of SME knowledge</td>
</tr>
<tr>
<td></td>
<td>o Capturing SME knowledge</td>
</tr>
<tr>
<td></td>
<td>o Applying knowledge</td>
</tr>
<tr>
<td></td>
<td>• Benefits of a Virtual SME program</td>
</tr>
<tr>
<td>3:00 – 3:30 pm</td>
<td>Networking Break</td>
</tr>
<tr>
<td>3:30 – 5:00 pm</td>
<td>Automated Diagnostic Techniques and Case Study</td>
</tr>
<tr>
<td></td>
<td>• Define and Contrast Diagnostic Techniques</td>
</tr>
<tr>
<td></td>
<td>• How to automate the diagnostic process</td>
</tr>
<tr>
<td></td>
<td>• Belief Network Diagnostic Methodology</td>
</tr>
<tr>
<td></td>
<td>• Application of automated Diagnostic Case Study</td>
</tr>
<tr>
<td></td>
<td>• Key Challenges and Limitations for automated Diagnostics</td>
</tr>
<tr>
<td></td>
<td>Automated Prognostic Techniques and Case Study</td>
</tr>
<tr>
<td></td>
<td>• Define and Contrast Prognostic Techniques</td>
</tr>
<tr>
<td></td>
<td>• How to apply automated prognostic techniques</td>
</tr>
<tr>
<td></td>
<td>• Application of automated Prognostic Case Study</td>
</tr>
<tr>
<td></td>
<td>• Key Challenges and Limitations of Prognostic Models</td>
</tr>
<tr>
<td>5:00 pm</td>
<td>Wrap-up/Conclusions</td>
</tr>
<tr>
<td></td>
<td>Workshop Concludes</td>
</tr>
</tbody>
</table>
WORKSHOP INSTRUCTORS

Primary Instructor
Scott Affelt
President, co-Founder, XMPLR Energy

Scott Affelt is the President and co-founder of XMPLR Energy, a consulting firm focused on: data analytics and digitalization solutions and strategies for Energy and Power; business development strategies for disruptive technologies; and technology transfer/licensing strategies and implementation for new markets (USA and foreign). Scott is also a partner at the Zurich-based, AVP Group, a management consulting and M&A firm focused on the power, renewables and water industries where he co-leads the North America, Power and Digitalization practices.

Previously, Mr. Affelt was Vice-President of Business Development, Sales and Marketing at Zolo Technologies and venture-funded cleantech company. Prior to Zolo, Mr. Affelt was President of Doosan Babcock Energy America LLC (formerly Mitsui Babcock USA LLC) where he introduced the company’s after-market services business including coal boiler upgrades and innovative emission reduction solutions into the US market.

Content Co-Contributor
Randy Bickford
President and Chief Technology Officer, Expert Microsystems (EMS)

Randy Bickford is the founder and President of Expert Microsystems. Randy is a recognized worldwide expert in predictive analytics for asset health management and prognostics. He is one of the industry’s pioneers and holds multiple patents in the areas of pattern recognition, fault detection, diagnostics, and prognostics. He is a principal architect and developer of EMS’ SureSense® software suite, which is the most comprehensive and cost-effective asset health management and reliability assurance software available. The flexible open architecture and patented algorithms in SureSense provide rapidly customized solutions for each client’s unique implementation. SureSense software is deployed for asset health management in the electric power generation, aerospace, military, cyber security, electronic and industrial process control industries. SureSense is also embedded into clients’ products to provide custom diagnostic information to their users.

Randy also led development of the Fleet-wide Prognostics and Health Management Suite software, a web-based, enterprise-scale platform for improved health management of power plant assets and other industrial asset fleets. This product is available through the Electric Power Research Institute (EPRI) or directly from EMS. Randy has also worked with EPRI in developing best practices for advanced pattern recognition modeling; best practices for remote monitoring and diagnostic centers; and developing and characterizing an asset fault signatures database for a wide range of power generation assets.
INSTRUCTIONAL METHODS

Case studies and PowerPoint presentations will be used at this event.

REQUIREMENTS FOR SUCCESSFUL COMPLETION

Participants must sign in/out each day and be in attendance for the entirety of the conference for continuing education credit.

IACET CREDITS

EUCI has been accredited as an Authorized Provider by the International Association for Continuing Education and Training (IACET). In obtaining this accreditation, EUCI has demonstrated that it complies with the ANSI/IACET Standard which is recognized internationally as a standard of good practice. As a result of their Authorized Provider status, EUCI is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET Standard.

EUCI is authorized by IACET to offer 1.0 CEUs for the conference and 0.4 CEUs for the workshop.

REGISTER 3, SEND THE 4TH FREE

Any organization wishing to send multiple attendees to this event may send 1 FREE for every 3 delegates registered. Please note that all registrations must be made at the same time to qualify.

EVENT LOCATION

A room block has been reserved at the Hilton Garden Inn New Orleans French Quarter/Central Business District, 821 Gravier Street New Orleans, LA 70112, for the nights of January 22-23, 2017. Room rates are US $139 plus applicable tax. Call 1-504-324-6000 for reservations and mention the EUCI event to get the group rate. The cutoff date to receive the group rate is January 3, 2018 but as there are a limited number of rooms available at this rate, the room block may close sooner. Please make your reservations early.

SPONSORSHIP OPPORTUNITIES

Do you want to drive new business through this event’s powerful audience? Becoming a sponsor or exhibitor is an excellent opportunity to raise your profile before a manageably sized group of executives who make the key purchasing decisions for their businesses. There is a wide range of sponsorship opportunities available that can be customized to fit your budget and marketing objectives, including: Platinum, gold, or VIP sponsor, Reception host, Networking break host, Tabletop exhibit, Workshop sponsor, Lanyard sponsor, Luncheon host and Breakfast host.

Please contact Dave Hoffman at dhoffman@euci.com or 720-642-9751 for more information.
REGISTRATION INFORMATION

Mail Directly To:
EUCI
4601 DTC Blvd., Ste. 800, Denver, CO 80237
OR, scan and email to: conferences@euci.com

WWW.EUCI.COM
p: 303-770-8800
f: 303-741-0849

EVENT LOCATION

A room block has been reserved at the Hilton Garden Inn
New Orleans French Quarter/Central Business District, 821
Gravier Street New Orleans, LA 70112, for the nights of
January 22-23, 2017. Room rates are US $139 plus applicable
tax. Call 1-504-324-6000 for reservations and mention the
EUCI event to get the group rate. The cutoff date to receive
the group rate is January 3, 2018 but as there are a limited
number of rooms available at this rate, the room block may
close sooner.

Please make your reservations early.

ENERGIZE WEEKLY

EUCI's Energize Weekly e-mail newsletter compiles and reports on
the latest news and trends in the energy industry.
Newsletter recipients also receive a different, complimentary
course presentation every week on a relevant industry topic. The
presentations are selected from a massive library of more than
1,000 current presentations that EUCI has gathered during its 30
years organizing courses.

Sign me up for Energize Weekly

PLEASE REGISTER

MANAGING THE DIGITALLY INTEGRATED POWER PLANT
CONFERENCE AND WORKSHOP
JANUARY 23-24, 2018: US $1795
Early bird on or before January 12, 2018: US $1595

MANAGING THE DIGITALLY INTEGRATED POWER PLANT
CONFERENCE ONLY: JANUARY 23-24, 2018: US $1395
Early bird on or before January 12, 2018: US $1195

POST-CONFERENCE WORKSHOP ONLY
WEDNESDAY, JANUARY 24, 2018: US $595
Early bird on or before January 12, 2018: US $495

I'M SORRY I CANNOT ATTEND, BUT PLEASE EMAIL ME A LINK
TO THE CONFERENCE PROCEEDINGS FOR US $395

How did you hear about this event? (direct e-mail, colleague, speaker(s), etc.)

Print Name

Job Title

Company

What name do you prefer on your name badge?

Address

City

State/Province

Zip/Postal Code

Country

Phone

Email

List any dietary or accessibility needs here.

CREDIT CARD INFORMATION

Name on Card

Billing Address

Account Number

Billing City

Exp. Date

Billing State

Security Code (last 3 digits on the back of Visa and MC or 4 digits on front of AmEx)

Billing Zip Code/Postal Code

OR Enclosed is a check for $ to cover registrations.

Substitutions & Cancellations:
Your registration may be transferred to a member of your organization up to 24 hours in advance of the event. Cancellations must be received on or before December 22, 2017 in order to be refunded and will be subject to a US $195.00 processing fee per registrant. No refunds will be made after this date. Cancellations received after this date will create a credit of the tuition (less processing fee) good toward any other EUCI event. This credit will be good for six months from the cancellation date. In the event of non-attendance, all registration fees will be forfeited. In case of course cancellation, EUCI's liability is limited to refund of the event registration fee only. For more information regarding administrative policies, such as complaints and refunds, please contact our offices at 303-770-8800.

EUCI reserves the right to alter this program without prior notice.